Spurious Topological Entanglement Entropy from Subsystem Symmetries

نویسندگان
چکیده

منابع مشابه

Topological entanglement entropy.

We formulate a universal characterization of the many-particle quantum entanglement in the ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a disk in the plane, with a smooth boundary of length L, large compared to the correlation length. In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a marginal densit...

متن کامل

Topological Entanglement Entropy and Holography

We study the entanglement entropy in confining theories with gravity duals using the holographic prescription of Ryu and Takayanagi. The entanglement entropy between a region and its complement is proportional to the minimal area of a bulk hypersurface ending on their border. We consider a disk in 2+1 dimensions and a ball in 3+1 dimensions and find in both cases two types of bulk hypersurfaces...

متن کامل

Perturbative analysis of topological entanglement entropy from conditional independence

We use the structure of conditionally independent states to analyze the stability of topological entanglement entropy. For the ground state of the quantum double or Levin-Wen model, we obtain a bound on the first-order perturbation of topological entanglement entropy in terms of its energy gap and subsystem size. The bound decreases superpolynomially with the size of the subsystem, provided the...

متن کامل

Topological Entanglement Entropy from the Holographic Partition Function

We study the entropy of chiral 2+1-dimensional topological phases, where there are both gapped bulk excitations and gapless edge modes. We show how the entanglement entropy of both types of excitations can be encoded in a single partition function. This partition function is holographic because it can be expressed entirely in terms of the conformal field theory describing the edge modes. We giv...

متن کامل

Identifying topological order by entanglement entropy

Topological phases are unique states of matter that incorporate long-range quantum entanglement and host exotic excitations with fractional quantum statistics. Here we report a practical method to identify topological phases in arbitrary realistic models by accurately calculating the topological entanglement entropy using the density matrix renormalization group (DMRG). We argue that the DMRG a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2019

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.122.140506